1.675 (7) \AA, typical of exocyclic thiones (Form, Raper \& Downie, 1976). The endocyclic $\mathrm{S}-\mathrm{C}\left(s p^{2}\right)$ and $\mathrm{S}-\mathrm{C}\left(s p^{3}\right)$ distances range from 1.724 (7) to 1.744 (7) \AA and from 1.791 (10) to $1.823(10) \AA$, respectively. They agree well with the corresponding data found for similar systems (Stanković, Ribár, Kálmár \& Argay, 1980).

The $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ distances and bond angles for both coordinated and uncoordinated molecules are similar to each other and to those found in 3-(p -bromobenzyl)-1,3-thiazolidine-2-thione (Bryan, Hartley, Peckler, Fujita, Nagao \& Seno, 1980). The bond lengths suggest the thione form for all the ttz molecules in our structure. However, the very short $N(1)-C(1), N(2)-C(4)$ and $N(3)-C(7)$ bonds, and the near equality of the exocyclic and endocyclic $\mathrm{S}-\mathrm{C}\left(s p^{2}\right)$ bonds point to some contribution also from the thiol form.

Though the three independent ttz rings in the unit cell are very similar in their geometry, significant differences occur in their conformation.

The two coordinated ligands have the twist form with $C(2), C(3)$ and $C(5), C(6)$ deviating significantly from the plane defined by the remaining atoms of their respective rings (Table 4). The thiazolidine ring of the solvating molecule is, however, strictly planar. These differences in conformation are presumably due to packing effects and to the coordination of ligand to metal ion. The crystal packing is illustrated in Fig. 1.

The Cl^{-}ion is hydrogen bonded to the N atom of each of the three independent ttz molecules. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ angles ($154-168^{\circ}$) and $\mathrm{N} \cdots \mathrm{Cl}$ distances ($3 \cdot 16-3 \cdot 25 \AA$) are in good agreement with published
data for such hydrogen bonds (Hamilton \& Ibers, 1968).

The Cl^{-}anions which are relatively close to the Pd atom [3.504 (2) \AA] complete the psuedooctahedral coordination sphere around the metal.

The authors are indebted to Dr M. Jaskolski of Poznan University for providing the program STORAN. This work was supported by the Polish Academy of Science.

References

Berta, D. A., Spofford, W. A., Boldrini, P. \& Amma, E. L. (1970). Inorg. Chem. 9, 136-142.

Bryan, R. F., Hartley, P., Peckler, S., Fuiita, E., Nagao, Y. \& Seno, K. (1980). Acta Cryst. B36, 1709-1710.
De Filippo, D., Devillanova, F., Trogu, E. F., Verani, G., Preti, C. \& Viglino, P. (1973). Can. J. Chem. 51, 1172-1178.
Dehand, J. \& Jordanov, J. (1976). Inorg. Chim. Acta, 17, 37-44.
Form, G. R., Raper, E. S. \& Downie, T. C. (1976). Acta Cryst. B32, 345-348.
Hamilton, W. C. \& Ibers, J. A. (1968). In Hydrogen Bonding in Solids. New York: Benjamin.
International Tables for X-ray Crystallography (1974). Vol. IV. Brimingham: Kynoch Press.

Raper, E. S. \& Nowell, I. W. (1979). Acta Crust. B35, 1600-1603.
Spofford, W. A. \& Amma, E. L. (1976). J. Cryst. Mol. Struct. 6, 235-258.
Stanković, S., Ribár, B., Kálmán, A. \& Argay, G. (1980). Acta Cryst. B36, 1235-1238.

Acta Cryst. (1982). B38, 2034-2037

Tricarbonyl[2-5- η-(methyl 3,5-dimethoxy- 1α-methyl-2,4-cyclohexadiene-1 β-carboxylate)]iron(0)

By Albert Dunand* and Glen B. Robertson \dagger
Research School of Chemistry, The Australian National University, PO Box 4, Canberra, ACT 2600, Australia

(Received 18 November 1981; accepted 25 February 1982)
Abstract. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{FeO}_{7}, M_{r}=352 \cdot 13$, triclinic, $P \overline{1}, a=$
7.590 (1) , $b=8.445$ (1),$c=12.175$ (1) $\AA, \quad a=$
$81.49(1), \beta=85.30(1), \gamma=82.85(1)^{\circ}(293 \mathrm{~K}), U=$
$764.2 \AA^{3}, Z=2, D_{c}=1.531 \mathrm{Mg} \mathrm{m}-\quad, F(000)=364$,

[^0]0567-7408/82/072034-04\$01.00
$\mu($ Mo $K \alpha)=1.049 \mathrm{~mm}^{-1}$. Refinement converged with $R=0.028, R_{w}=0.045$ for 2582 diffractometer data $[I \geq 3 \sigma(I)]$. The metal-ligand bonding follows the expected pattern for 1,3 -dienetricarbonyliron (0) complexes.

Introduction. Substituent directive effects in the reactions of substituted cyclohexadienes with iron carbonyls have been studied extensively in these
laboratories, by A. J. Birch and co-workers, with a view to exploiting the complexes so formed in organic synthesis (Birch et al., 1981; Kelly, 1981). The title complex results from reaction of the 2,5 -diene (1) with $\mathrm{Fe}(\mathrm{CO})_{s}$ to yield both the α and β isomers (2 and 3) in equal amounts (Kelly, 1981). The isomers were separable by chromatography but the stereochemistry could only be assigned with certainty by crystalstructure analysis.

A crystal with dimensions $0.25 \times 0.30 \times 0.33 \mathrm{~mm}$ parallel to [151], [001] and [101], respectively, was used for data collection. Reflection intensities were measured on a Picker FACS-1 diffractometer in the $\theta-2 \theta$ continuous scan mode (scan velocity $2^{\circ} \mathrm{min}^{-1}$. (2θ), 2×10 s background counts at extremes, $3^{\circ}<$ $2 \theta<52 \cdot 5^{\circ}$, Mo $K \bar{\alpha}$ radiation, graphite-crystal monochromator, forms recorded: $\pm h,+k, \pm l, \quad 3105$ reflections including standards (3 every 97 data)]. Data were corrected for Lorentz, polarization, crystal degradation [linear decay rate $0.101(17) \times 10^{-5}$ per reflection measured; Churchill \& Kalra, 1974] and absorption effects (de Meulenaer \& Tompa, 1965). The 2582 unique data with $I>3 \sigma(I)$ were accorded Σ_{2} weights (with $p^{2}=0.002$ assumed; Busing \& Levy, 1957; Corfield, Doedens \& Ibers, 1967) for use in subsequent refinement. R_{s} for this data set (Robertson \& Whimp, 1975) was 0.011 . Cell dimensions and standard errors derive from least-squares analysis of the setting angles for 12 well separated reflections in the range $37^{\circ}<2 \theta<41^{\circ}$ (Mo $K \alpha_{1}$ radiation, $\lambda=$ $0.70926 \AA, T \simeq 293 \mathrm{~K}$].

The structure was solved by standard heavy-atom Patterson/Fourier synthesis techniques. H atoms were located from a difference synthesis. Full-matrix leastsquares refinement with anisotropic thermal parameters for Fe, O and C , and isotropic thermal parameters for H atoms converged with $R=0.028, R_{w}=$

Fig. 1. The labelling scheme of $\left[\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}\right)\right]$.
0.045 and $\left[\sum w \Delta^{2} /(n-s)\right]^{1 / 2}=1.56$. An extinction correction (Zachariasen, 1963) applied to F_{c} refined to $6.2(4) \times 10^{-6}$. A final difference synthesis revealed no features higher than $0.3 \mathrm{e} \AA^{-3}$. Scattering factors, with dispersion corrections for Fe, C and O , were taken from International Tables for X-ray Crystallography (1974). Calculations were performed using $A N U C R Y S$ programs (McLaughlin, Taylor \& Whimp, 1977) and the Australian National University Univac 1100/82 computer. The figures were drawn with ORTEP (Johnson, 1976). Atom nomenclature is defined in Fig. 1 and the corresponding coordinates are listed in Table 1.* Bond distances and angles are given in Tables 2 and

> * Lists of structure amplitudes, anisotropic thermal parameters and deviations from planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36763 (14 pp.). Copies may be obtained through The Executive Scretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2 HU , England.

Table 1. Atomic coordinates ($\times 10^{5}$ for $\mathrm{Fe}, \times 10^{4}$ for C and $\mathrm{O}, \times 10^{3}$ for H) and isotropic thermal parameters

	x	y	2	$\begin{aligned} & B_{\text {eq }}{ }^{*} \\ & \left(\AA^{2}\right) \end{aligned}$
Fe	21517 (3)	31622 (3)	22231 (2)	2.73
C(1)	1236 (2)	1911 (2)	1043 (1)	2.95
C(2)	-175 (2)	2919 (2)	1519 (1)	3.11
C(3)	-428(2)	2566 (2)	2677 (1)	$3 \cdot 11$
C(4)	836 (2)	1357 (2)	3186 (1)	3.00
C(5)	1222 (2)	-225 (2)	2712 (1)	$2 \cdot 96$
C(6)	1441 (3)	121 (2)	1436 (1)	3.60
O (7)	1558 (2)	2381 (2)	-86 (1)	3.71
C (8)	3239 (3)	1787 (4)	-557(2)	4.83
$\mathrm{O}(9)$	-1668 (2)	3331 (2)	3338 (1)	3.96
$\mathrm{C}(10)$	-2570 (3)	4815 (3)	2845 (2)	4.81
$\mathrm{C}(11)$	-300 (3)	-1274 (3)	3092 (2)	4.33
C(12)	2899 (2)	-1212 (2)	3161 (1)	3.11
$\mathrm{O}(13)$	3886 (2)	-2115 (2)	2663 (1)	4.87
O (14)	3100 (2)	-1022 (2)	4205 (1)	4.02
C(15)	4588 (3)	-1990 (3)	4725 (2)	4.61
C(16)	2177 (2)	4196 (2)	3406 (2)	3.77
O (17)	2191 (3)	4783 (2)	4194 (2)	5.99
C(18)	2652 (3)	4863 (3)	1223 (2)	3.89
O (19)	2967 (3)	5914 (2)	581 (1)	$6 \cdot 13$
C (20)	4305 (2)	2071 (2)	2206 (2)	3.48
O(21)	5685 (2)	1371 (2)	2196 (2)	5.42
H(C2)	-77 (3)	376 (3)	107 (2)	$4 \cdot 1$ (5)
H(C4)	83 (3)	130 (3)	392 (2)	$4 \cdot 2$ (5)
H1(C6)	255 (3)	-38 (3)	116 (2)	$4 \cdot 8$ (5)
H2(C6)	62 (3)	-30 (3)	119 (2)	$4 \cdot 2$ (5)
H1(C8)	421 (5)	202 (5)	-15 (3)	8.6 (9)
H2(C8)	341 (4)	219 (4)	-121(3)	6.8 (8)
H3(C8)	338 (3)	74 (4)	-57(2)	$5 \cdot 3$ (6)
H1(C10)	-170 (3)	553 (4)	251 (2)	$5 \cdot 1$ (5)
H2(C10)	-325 (4)	519 (4)	338 (3)	7.0 (7)
H3(C10)	-333 (4)	463 (4)	221 (3)	5.9 (6)
H1(C11)	-39 (4)	-149 (4)	386 (3)	5.7 (6)
H2(C11)	-8 (3)	-229 (4)	283 (2)	5.7 (6)
H3(C11)	-151 (4)	-72 (4)	285 (2)	$5 \cdot 2(6)$
H1(C15)	558 (4)	-180 (4)	426 (2)	6.0 (7)
H2(C15)	462 (5)	-319 (5)	474 (3)	8.7 (9)
H3(C15)	443 (4)	-174 (4)	542 (3)	6.9 (7)

[^1]

Fig. 2. Stereoscopic view of $\left|\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4}\right)\right|$ perpendicular to the diene plane. Vibration ellipsoids correspond to 50% probability surfaces and H atoms are depicted as $0.1 \AA$ radius spheres.

Table 2. Bond lengths (\AA)

$\mathrm{Fe}-\mathrm{C}(1)$	$2.112(2)$	$\mathrm{O}(7)-\mathrm{C}(1)$	$1.384(2)$
$\mathrm{Fe}-\mathrm{C}(2)$	$2.070(2)$	$\mathrm{O}(7)-\mathrm{C}(8)$	$1.419(3)$
$\mathrm{Fe}-\mathrm{C}(3)$	$2.092(2)$	$\mathrm{O}(9)-\mathrm{C}(3)$	$1.353(2)$
$\mathrm{Fe}-\mathrm{C}(4)$	$2.087(2)$	$\mathrm{O}(9)-\mathrm{C}(10)$	$1.426(3)$
$\mathrm{Fe}-\mathrm{C}(16)$	$1.794(2)$	$\mathrm{C}(11)-\mathrm{C}(5)$	$1.543(3)$
$\mathrm{Fe}-\mathrm{C}(18)$	$1.798(2)$	$\mathrm{C}(12)-\mathrm{C}(5)$	$1.527(2)$
$\mathrm{Fe}-\mathrm{C}(20)$	$1.713(2)$	$\mathrm{C}(12)-\mathrm{O}(13)$	$1.196(2)$
$\mathrm{C}(16)-\mathrm{O}(17)$	$1.145(3)$	$\mathrm{C}(12)-\mathrm{O}(14)$	$1.328(2)$
$\mathrm{C}(18)-\mathrm{O}(19)$	$1.128(3)$	$\mathrm{O}(14)-\mathrm{O}(15)$	$1.441(2)$
$\mathrm{C}(20)-\mathrm{O}(21)$	$1.137(2)$	$\mathrm{C}(2)-\mathrm{H}(\mathrm{C} 2)$	$0.93(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.423(2)$	$\mathrm{C}(4)-\mathrm{H}(\mathrm{C} 4)$	$0.89(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.399(3)$	$\mathrm{C}(6)-\mathrm{H} 1(\mathrm{C} 6)$	$0.95(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.419(3)$	$\mathrm{C}(6)-\mathrm{H} 2(\mathrm{C} 6)$	$0.85(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.519(2)$	$\mathrm{C}(\mathrm{Me})-\mathrm{H}$	0.94 ± 0.12
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.536(2)$		
$\mathrm{C}(6)-\mathrm{C}(1)$	$1.509(3)$		

Table 3. Valency angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)$	39.78 (7)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(\mathrm{C} 4)$	114.5 (15)
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(3)$	39.26 (7)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(\mathrm{C} 4)$	116.9 (17)
$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(4)$	39.69 (7)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	109.4 (1)
$\mathrm{C}(16)-\mathrm{Fe}-\mathrm{C}(18)$	94.56 (9)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	109.7(1)
$\mathrm{C}(16)-\mathrm{Fe}-\mathrm{C}(20)$	101.48 (8)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(12)$	111.4 (1)
$\mathrm{C}(18)-\mathrm{Fe}-\mathrm{C}(20)$	97.77 (9)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(11)$	111.1(2)
$\mathrm{Fe}-\mathrm{C}(16)-\mathrm{O}(17)$	176.6 (2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(12)$	109.7 (1)
$\mathrm{Fe}-\mathrm{C}(18)-\mathrm{O}(19)$	178.8 (2)	$\mathrm{C}(11)-\mathrm{C}(5)-\mathrm{C}(12)$	105.6 (1)
$\mathrm{Fe}-\mathrm{C}(20)-\mathrm{O}(21)$	179.9 (2)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	110.9 (1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	119.6 (2)	$\mathrm{C}-\mathrm{C}(6)-\mathrm{H}$	109.6 ± 3.1
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(7)$	112.5 (1)	$\mathrm{H} 1(\mathrm{C} 6)-\mathrm{C}(6)-\mathrm{H} 2(\mathrm{C} 6)$	107.5 (22)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(7)$	116.5 (1)	$\mathrm{C}(1)-\mathrm{O}(7) \cdot \mathrm{C}(8)$	116.0 (1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.9 (1)	C (3)--O(9)-C(10)	116.5 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(\mathrm{C} 2)$	119.3 (13)	$\mathrm{C}(5)-\mathrm{C}(12) \cdots \mathrm{O}(13)$	$124.8(2)$
$\mathrm{C}(3)-\mathrm{C}(2) \cdots \mathrm{H}(\mathrm{C} 2)$	126.7 (13)	$\mathrm{C}(5)-\mathrm{C}(12) \cdot \mathrm{O}(14)$	112.0 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$115.2(1)$	$\mathrm{O}(13)-\mathrm{C}(12) \mathrm{O}(14)$	$123.0(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(9)$	$126.3(2)$	$\mathrm{C}(12)-\mathrm{O}(14) \cdot \mathrm{C}(15)$	$116.012)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(9)$	118.4 (2)	C.O--C(Me) H	$110 \cdot 1+8.5$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.3(1)	H C(Me)-H	$108.8 \pm 15 \cdot 2$

3 respectively, and a stereoview of the molecule is shown in Fig. 2.

Discussion. The metal-ligand bonding arrangement conforms closely to that observed in other (1,3cyclohexadiene)tricarbonyliron derivatives (Cotton \& Troup, 1974, and references therein; Ireland, Brown, Stanford \& McKenzie, 1974; Guy, Reichert \& Shel-
drick, 1976; Johnson, Lewis, Parker, Raithby \& Sheldrick, 1978). The dihedral angle between the sets $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$ and $\mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(1)$ $\left(42.5^{\circ}\right)$ is larger than has been reported to date (36.3-40.6 ${ }^{\circ}$) but agrees well with values observed in these laboratories for $2-5-\eta$-(dimethyl 2,4-cyclohexa-diene-1 $\alpha, 2$-dicarboxylate) $\mathrm{Fe}(\mathrm{CO})_{3}$ and $2-5-\eta$-(dimethyl 2,4-cyclohexadiene-1 $\beta, 2$-dicarboxylate) $\mathrm{Fe}(\mathrm{CO})_{3}$ (42.1 and 43.4°, Dunand \& Robertson, 1982) and for 2-5- η-(methyl 1α-phenyl-2,4-cyclohexadiene- 1β carboxylate $) \mathrm{Fe}(\mathrm{CO})_{3} \quad\left(42 \cdot 2^{\circ}\right.$, Anderson, Bandara, Birch \& Robertson, 1982). The C(4), C(5), C(6), C(1) set is closely planar $\left[\Delta_{\max }=0.006(2) \AA\right]$ whereas the diene fragment $[\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$ set] is slightly aplanar $\left[\Delta_{\text {max }}=0.022(2) \AA\right]$ with a torsion angle [about $\mathrm{C}(2)-\mathrm{C}(3)$] of $4.6(2)^{\circ}$. While $\mathrm{O}(9)$ is closely coplanar with the diene fragment, $\mathrm{O}(7)$ and the H atoms $\mathrm{H}(\mathrm{C} 2)$ and $\mathrm{H}(\mathrm{C} 4)$ are each displaced towards the Fe atom lby $0.155(1), 0.12$ (2) and 0.18 (2) \AA respectively]. The methyl groups in both methoxy substituents are tilted further towards the metal from the diene plane; hence the torsion angles $C(2)$ -$\mathrm{C}(1)-\mathrm{O}(7)-\mathrm{C}(8), \quad 18 \cdot 6$ (2) and $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(9)-$ $C(10),-12 \cdot 7(3)^{\circ}$. Each methoxy O is in van der Waals contact with one carbonyl group of the $\mathrm{Fe}(\mathrm{CO})_{3}$ moiety at distances $\mathrm{O}(7) \cdots \mathrm{C}(18)$, 3.043 (3), $\mathrm{O}(7) \cdots \mathrm{O}(19), 3 \cdot 515(2), \mathrm{O}(9) \cdots \mathrm{C}(16), 3 \cdot 106$ (2) and $\mathrm{O}(9) \cdots \mathrm{O}(17), 3 \cdot 598(3) \AA$ respectively. It is remarkable that the dihedral angles defined by the planes through $\mathrm{C}(1), \mathrm{O}(7), \mathrm{C}(8)$ and $\mathrm{C}(1), \mathrm{O}(7), \mathrm{C}(18)$ [about the $\mathrm{C}(1)-\mathrm{O}(7)$ hinge], and through $\mathrm{C}(3), \mathrm{O}(9), \mathrm{C}(10)$ and $C(3), O(9), C(16)$ [about the $C(3)-O(9)$ hinge], take equivalent values of 92.3 and $91 \cdot 6^{\circ}$ respectively. That the methoxy-group orientation is imposed by methoxy-carbonyl group interactions is open to speculation.

The methoxycarbonyl set $C(15), O(14), C(12)$, $\mathrm{O}(13)$ is planar within experimental error and adopts a perpendicular conformation about the $C(5)-C(12)$ bond Itorsion angles $\mathrm{C}(11)-\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{O}(13)$, 91.8 (2) and $\mathrm{C}(11)-\mathrm{C}(5)-\mathrm{C}(12)-\mathrm{O}(14),-84 \cdot 8$ (2) $\left.{ }^{\circ}\right]$. $C(12)$ is in van der Waals contact with the third carbonyl group $[-\mathrm{C}(20) \equiv \mathrm{O}(21)]$ of the $\mathrm{Fe}(\mathrm{CO})_{3}$ $[C(12) \cdots C(20), \quad 3 \cdot 123(3)$ and $\mathrm{C}(12) \cdots \mathrm{O}(21)$, $3 \cdot 255(3) \AA] . X$, the $\mathrm{C}(20) \equiv \mathrm{O}(21)$ carbonyl bond mid-point, is near equidistant from the set $\mathrm{C}(5), \mathrm{O}(13)$, $\mathrm{O}(14)$ and directly above $\mathrm{C}(12) \mid \mathrm{C}(5)-\mathrm{C}(12) \cdots X$, $88 \cdot 1, \mathrm{O}(13)-\mathrm{C}(12) \cdots X, 92 \cdot 3$ and $\mathrm{O}(14)-\mathrm{C}(12) \cdots X$, 92.5°. In turn, $C(12)$ is displaced 0.023 (2) \AA from the plane of the set $\mathrm{C}(5), \mathrm{O}(13), \mathrm{O}(14)$ towards X $[C(12) \cdots X, 3 \cdot 139 \AA]$. The displacement of $C(12)$ towards X, and the accompanying distortions of the methoxycarbonyl group, are consistent with the observation by Bürgi, Dunitz \& Shefter $(1973,1974)$ that,

[^2]for structures exhibiting short $\mathrm{N} \cdots \mathrm{C}=\mathrm{O}$ or $\mathrm{O} \cdots \mathrm{C}=\mathrm{O}$ contacts, the C atoms are generally displaced towards the N or O atoms respectively. The displacement exemplifies the effects of the interaction between a nucleophile and the electrophilic C atom of the carbonyl group.

We thank Dr L. F. Kelly and Professor A. J. Birch for presentation of the problem and provision of crystals and the Computer .Services Centre of the Australian National University for provision of computing facilities.

References

Anderson, B. F., Bandara, B. M. R., Birch, A. J. \& Robertson, G. B. (1982). J. Organomet. Chem. To be submitted.
Birch, A. J., Bandara, B. M. R., Chamberlain, K., Chauncy, B., Dahler, P., Day, A. I., Jenkins, I. D., Kelly, L. F., Khor, T.-C., Kretschmer, G., Liepa, A. J., Narula, A. S., Raverty, W. D., Rizzardo, E., Sell, C., Stephenson, G. R., Thompson, D. J. \& Williamson, D. H. (1981). Tetrahedron, Suppl. 37 (9), 289-302.
Bürgi, H. B., Dunitz, J. D. \& Shefter, E. (1973). J. Am. Chem. Soc. 95, 5065-5067.
Bürgi, H. B., Dunitz, J. D. \& Shefter, E. (1974). Acta Cryst. B30, 1517-1527.
Busing, W. R. \& Levy, H. A. (1957). J. Chem. Phys. 26, 563-568.

Churchill, M. R. \& Kalra, K. L. (1974). Inorg. Chem. 13, 1427-1434.
Churchill, M. R. \& Mason, R. (1967). Proc. R. Soc. London, Ser. A, 301, 433-449.
Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Cotton, F. A. \& Troup, J. M. (1974). J. Organomet. Chem. 77, 369-379.
Dunand, A. \& Robertson, G. B. (1982). Acta Cryst. B38, 2037-2040.
Guy, J. J., Reichert, B. E. \& Sheldrick, G. M. (1976). Acta Cryst. B32, 2504-2506.
International Tables for X-ray Crystallography (1974). Vol. IV, p. 99. Birmingham: Kynoch Press.
Ireland, R. E., Brown, G. G., Stanford, R. H. \& McKenzie, T. C. (1974). J. Org. Chem. 39, 51-59.
Johnson, B. F. G., Lewis, J., Parker, D. G., Raithby, P. R. \& Sheldrick, G. M. (1978). J. Organomet. Chem. 150, 115-122.
Johnson, C. K. (1976). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kelly, L. F. (1981). PhD Thesis. Australian National Univ., Canberra.
McLaughlin, G. M., Taylor, D. \& Whimp, P. O. (1977). The ANUCRYS Structure Determination Package. Research School of Chemistry, The Australian National Univ., Canberra.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Robertson, G. B. \& Whimp, P. O. (1975). J. Am. Chem. Soc. 97, 1051-1059.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Tricarbonyl[2-5- η-(dimethyl 2,4-cyclohexadiene-1 $\alpha, 2$-dicarboxylate)]iron(0) and Tricarbonyl[2-5- η-(dimethyl 2,4-cyclohexadiene-1 β,2-dicarboxylate)]iron(0)

By Albert Dunand* and Glen B. Robertson \dagger
Research School of Chemistry, The Australian National University, PO Box 4, Canberra, ACT 2600, Australia

(Received 18 November 1981; accepted 25 February 1982)

[^3]refinement converged with $R=0.019, R_{w}=0.027$ for 1665 diffractometer data $[I \geq 3 \sigma(I)]$. (B): triclinic, $P \overline{1}$, $a=6.883$ (1), $b=8.949(1), c=11.438$ (2) $\AA, \alpha=$ $91.50(1), \beta=101.78(1), \gamma=96.48(1)^{\circ}(293 \mathrm{~K}), U=$ $684.4 \AA^{3}, Z=2, D_{c}=1.631 \mathrm{Mg} \mathrm{m}^{-3}, \mu($ Мо $K \alpha)=$ $1 \cdot 164 \mathrm{~mm}^{-1}$; refinement converged with $R=0.026$, $R_{w}=0.039$ for 3309 diffractometer data. An unusually short $\mathrm{O} \cdots \mathrm{C}=\mathrm{O}$ contact in (B) $[2.652(2) \AA$, O (2-methoxycarbonyl) $\cdots \mathrm{C}=\mathrm{O}(1 \beta$-methoxycarbonyl) $]$ generates an appreciable pyramidal distortion [0.043 (1) \AA] of the four-atom $\mathrm{C}-(1 \beta$-carboxylate) set.

[^0]: * Present address: Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland.
 \dagger To whom correspondence should be addressed.

[^1]: ${ }^{*} B_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} B_{i} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathbf{a} ;$; actual B values for H atoms.

[^2]: * Except for (octafluoro-1,3-cyclohexadiene) $\mathrm{Fe}(\mathrm{CO})_{3}$ (Churchill \& Mason, 1967).

[^3]: Abstract. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FeO}_{7}, M_{r}=336 \cdot 09$. Structures of both the 1 $\alpha, 2-(A)$ and $1 \beta, 2$-bis(methoxycarbonyl) (B) isomers were determined. (A): monoclinic, $P c, a=$ 7.469 (2), $b=13.403$ (5), $c=6.978$ (2) $\AA, \beta=$ $93.85(2)^{\circ}(293 \mathrm{~K}), U=697.0 \AA^{3}, Z=2, D_{c}=1.602$ $\mathrm{Mg} \mathrm{m}^{-3}, F(000)=344, \mu($ Мо $K a)=1.143 \mathrm{~mm}^{-1}$;

 * Present address: Laboratoire de Cristallographie aux Rayons X, Université de Genève, 24 Quai Ernest-Ansermet, CH-1211 Genėve 4, Switzerland.
 \dagger To whom correspondence should be addressed.

